Local Search

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Iterative Improvement

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

" To apply to CSPs:

= Take an assignment with unsatisfied constraints
= QOperators reassign variable values
= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= (QOperators: move queen in column

" Goal test: no attacks

Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R number of constraints
number of variables

DS

|
critical
ratio

CPU
time

Local Search

= Tree search keeps unexplored alternatives on the fringe (ensures completeness)
" Local search: improve a single option until you can’t make it better (no fringe!)

= New successor function: local changes

O

1999

= Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
= |f no neighbors better than current, quit

= What’s bad about this approach?

= Complete?
= Optimal?

= What’s good about it?

Hill Climbing Diagram

objective function qlobal maximum

shoulder

\ local maximum

"flat” local maximum

state space
curren

state

Hill Climbing Quiz

Objective Function
F

State Space

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

" |dea: Escape local maxima by allowing downhill moves

= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
1" a “temperature’ controlling prob. of downward steps
1

current +— MAKE-NODE(INITIAL-STATE[problem])
for t+— 1 to oc do
T'— schedule[{]
if 7= 0 then return current
next «—a randomly selected successor of current
AFE+«— VALUE[next] = VALUE[current]
if AE > 0 then current «— next

. iy / {
else current — next only with probability e® /T

Simulated Annealing

" Theoretical guarantee:
= Stationary distribution: p(x) oc e kT

= |f T decreased slowly enough,
will converge to optimal state!

" |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

= The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all in a
row

= People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

24748552 | 24 31% _| 32752411 >_< 32748552 32748052

32752411 [23 29% | 24748552 24752411 24752411

24415124 | 20 26% ~| 32752411 >_< 32752124 32252124

32543213 | 11 14% ~| 24415124 24415411 }244154
Fithess Selection Pairs Cross—-Over

= Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

Ny does crossover make sense here?
nen wouldn’t it make sense?

nat would mutation be?

hat would a good fitness function be?

