
Local Search 

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.] 



Iterative Improvement 



Iterative Algorithms for CSPs 

 Local search methods typically work with “complete” states, i.e., all variables assigned 
 

 To apply to CSPs: 
 Take an assignment with unsatisfied constraints 
 Operators reassign variable values 
 No fringe!  Live on the edge. 

 
 Algorithm: While not solved, 

 Variable selection: randomly select any conflicted variable 
 Value selection: min-conflicts heuristic: 

 Choose a value that violates the fewest constraints 
 I.e., hill climb with h(n) = total number of violated constraints 



Example: 4-Queens 

 
 States: 4 queens in 4 columns (44 = 256 states) 
 Operators: move queen in column 
 Goal test: no attacks 
 Evaluation: c(n) = number of attacks 

[Demo: n-queens – iterative improvement (L5D1)] 
[Demo: coloring – iterative improvement] 



Performance of Min-Conflicts 

 Given random initial state, can solve n-queens in almost constant time for arbitrary 
n with high probability (e.g., n = 10,000,000)! 

 

 The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio 

 

 

 

 

 

 

 



Local Search 

 Tree search keeps unexplored alternatives on the fringe (ensures completeness) 

 

 Local search: improve a single option until you can’t make it better (no fringe!) 

 

 New successor function: local changes 

 

 

 

 

 

 Generally much faster and more memory efficient (but incomplete and suboptimal) 



Hill Climbing 

 Simple, general idea: 
 Start wherever 

 Repeat: move to the best neighboring state 

 If no neighbors better than current, quit 
 

 What’s bad about this approach? 
 Complete? 

 Optimal? 
 

 What’s good about it? 



Hill Climbing Diagram 



Hill Climbing Quiz 

Starting from X, where do you end up ? 
  
Starting from Y, where do you end up ? 
 
Starting from Z, where do you end up ? 



Simulated Annealing 

 Idea:  Escape local maxima by allowing downhill moves 
 But make them rarer as time goes on 
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Simulated Annealing 

 Theoretical guarantee: 
 Stationary distribution: 

 

 If T decreased slowly enough, 
 will converge to optimal state! 

 
 Is this an interesting guarantee? 

 
 Sounds like magic, but reality is reality: 

 The more downhill steps you need to escape a local 
optimum, the less likely you are to ever make them all in a 
row 

 People think hard about ridge operators which let you 
jump around the space in better ways 



Genetic Algorithms 

 Genetic algorithms use a natural selection metaphor 
 Keep best N hypotheses at each step (selection) based on a fitness function 

 Also have pairwise crossover operators, with optional mutation to give variety 
 

 Possibly the most misunderstood, misapplied (and even maligned) technique around 



Example: N-Queens 

 Why does crossover make sense here? 

 When wouldn’t it make sense? 

 What would mutation be? 

 What would a good fitness function be? 


