
Local Search

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Iterative Improvement

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe! Live on the edge.

 Algorithm: While not solved,

 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

 The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Local Search

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve a single option until you can’t make it better (no fringe!)

 New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

 Simple, general idea:
 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s bad about this approach?
 Complete?

 Optimal?

 What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

 Idea: Escape local maxima by allowing downhill moves
 But make them rarer as time goes on

10

Simulated Annealing

 Theoretical guarantee:
 Stationary distribution:

 If T decreased slowly enough,
 will converge to optimal state!

 Is this an interesting guarantee?

 Sounds like magic, but reality is reality:

 The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all in a
row

 People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor
 Keep best N hypotheses at each step (selection) based on a fitness function

 Also have pairwise crossover operators, with optional mutation to give variety

 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

 Why does crossover make sense here?

 When wouldn’t it make sense?

 What would mutation be?

 What would a good fitness function be?

